CONTRIBUTION FROM THE REACTOR CHEMISTRY DIVISION, OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE, ^{1a} AND LOS ALAMOS SCIENTIFIC LABORATORY, UNIVERSITY OF CALIFORNIA, LOS ALAMOS, NEW MEXICO

Equilibrium Relations and Crystal Structure of Lithium Fluorolanthanate Phases

BY R. E. THOMA,¹⁶ G. D. BRUNTON,¹⁶ R. A. PENNEMAN,¹⁶ and T. K. KEENAN¹⁶

Received October 27, 1969

Equilibrium phase diagrams of the LiF-LnF₈ condensed binary systems were established. For the members of the series with low atomic number only a simple eutectic is found; for the lanthanides europium to lutetium, the single intermediate compound, LiLnF₄, forms in each binary system. These compounds melt incongruently to LnF₈ and liquid when Z = 63-68, and congruently when Z = 69-71. The lithium tetrafluorolanthanates are isomorphous. A single-crystal study of LiYbF₄ established the space group as I4₁/a, with lattice constants $a_0 = 5.1335$ (2) and $c_0 = 10.588$ (2) Å. The existence of the tetrafluorolanthanates, conforming closely with earlier predictions, indicates the possibility of actinide analogs. Because of similar ionic sizes and charges of the lanthanides and the heavier actinides, it was anticipated that lithium fluoride-actinide trifluoride compound formation could begin at $Z \ge 96$ (curium). However, hydrogen reduction of the known LiF·AmF₄ and LiF·CmF₄ compounds gave only the trifluorides and LiF.

Introduction

The abundance of complex compounds formed by the lanthanide or actinide fluorides has attracted the interest of inorganic and structural chemists. Successful predictions of compound formation can be based on simple criteria such as cation radius ratios² and field strength ratios.^{3,4} The two series of lanthanide and actinide fluoride complexes offer unique possibilities for further considerations of size and charge effects. They afford compound sequences in which adjacent members are differentiated by small but finite increments in ion size and field strengths.

The LiF-LnF₃ series of binary systems affords a good opportunity for examination of size-charge effects. Our previous investigation of the LiF-YF₃ binary system⁵ had shown the occurrence of the single intermediate compound LiYF₄. In contrast, earlier investigations of the LiF-LaF₃ and LiF-CeF₃ systems, respectively,^{6,7} had *not* indicated the occurrence of intermediate compounds. We expanded those initial studies to include the equilibrium behavior of all LiF-LnF₃ melts. We also determined the crystal structure of the LiLnF₄ compounds, using single crystals of LiYbF₄, produced in these investigations. Some preliminary data have already been noted in previous reviews.^{8,9}

Experimental Procedures

Materials.-Standard techniques for preparation and purifica-

(4) G. A. Bukhalova and E. P. Dergunov, Russ. J. Inorg. Chem., 11, 337 (1966).

(5) R. E. Thoma, et al., J. Phys. Chem., 65, 1096 (1961).

(6) G. A. Bukhalova and E. P. Babaev, Russ. J. Inorg. Chem., 10, 1883 (1965).

- (7) C. J. Barton, *et al.*, "Phase Diagrams of Nuclear Reactor Materials,"
 R. E. Thoma, Ed., ORNL Report 2548, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1959.
- (8) R. E. Thoma, "Progress in the Science and Technology of the Rare Earths," Vol. 2, L. Eyring, Ed., Pergamon Press, Oxford, 1966, pp 90-122.
- (9) D. Brown, "Halides of the Lanthanides and Actinides," John Wiley and Sons, London, 1968, p 79.

tion of molten fluorides for high-temperature investigations have been reported previously.⁹⁻¹¹ Both commercial and laboratory prepared¹² single-crystal LiF samples were used.

Lanthanide oxides of 99.6-99.9% purity were converted to the trifluorides with ammonium bifluoride; this ensures that the oxide contamination of the product does not exceed ~ 300 ppm.¹³ Purity of the trifluoride product was verified by X-ray diffraction analysis and by petrographic examination.

We have found from past experience that reaction between lithium fluoride and actinide fluorides at $\sim 400^{\circ}$ is not a satisfactory method of achieving compound formation. However, a preferred method involves conversion of a mixture of chlorides to fluoride with elemental fluorine. Thus, samples of LiCl and AmCl₃ and LiCl and CmCl₃ were equilibrated with F₂, yielding first the tetravalent actinide compounds LiAmF₅ and LiCmF₃.¹⁴ Overnight equilibration in hydrogen reduced the tetravalent actinide to the trivalent state.

Methods.—Several methods were used for investigation of the equilibrium phase behavior in the LiF–LnF₃ binary systems. Preponderantly, phase-transition data were obtained by thermal analysis of crystallizing melts and subsequent thermal gradient quenching (a modification of classical quenching methods) and by direct visual observation techniques.

Single crystals of LiYbF4 were isolated from quenched specimens of LiF-YbF3 mixtures. Single-crystal fragments of Li-VbF4 were ground in an air race; an ellipsoid 0.184 \times 0.184 \times 0.292 mm was selected for single-crystal X-ray diffraction analysis. The ellipsoid was mounted on a computer-operated Picker four-circle goniostat and the diffraction intensities were measured with a scintillation-counter detector using unfiltered Mo K α radiation (λ (K α_1) 0.70926 Å, λ (K α_2) 0.713543 Å) out to 90° 2 θ by the 2 θ -scan technique. An angular range of 1.3° was step-scanned in increments of 0.01° with counts of 1 sec at each step. The background was counted for 100 sec at the beginning and end of each scan. The takeoff angle was 4°. A standard reflection (408) was used to check on intensity drift every 20 reflections. One measurement of the standard reflection was assigned unit value and the others are expressed as fractions of this value. The intensity measurements obtained between two successive measurements of the standard reflection are linearly interpolated. The intensities are thus referred to a single value of the (408) intensity. Each reflection was corrected for absorption ($\mu = 351.3 \text{ cm}^{-1}$). The lattice parameters were determined from 30 high-angle (45-80° 2θ) Mo K α_1 reflections

- (10) R. E. Thoma, et al., Inorg. Chem., 5, 1222 (1966).
- (11) R. E. Thoma and G. D. Brunton, ibid., 5, 1937 (1966).
- (12) R. E. Thoma, et al., Solid State Commun. 147 (1967).
- (13) Analyses were provided through the courtesy of the ORNL Analytical Chemistry Division.
- (14) T. K. Keenan, Inorg. Nucl. Chem. Letters, 2, 153 (1966).

^{(1) (}a) Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corp. and by the Los Alamos Scientific Laboratory. (b) Oak Ridge National Laboratory. (c) Los Alamos Scientific Laboratory.

⁽²⁾ R. E. Thoma, I norg. Chem., 1, 220 (1962).

⁽³⁾ K. S. Vorres, J. Am. Ceram. Soc., 46, 410 (1963).

Atom	x	У	z	β ₁₁ ^a x10 ³	β ₂₂ x10 ³	β 33 x10 ³	β ₁₂ ×10	β ₁₃ x10 ³	β ₂₃ x10 ³	
ΥЪ	0.0	1/4	5/8	5,45(9) ^b	с	0.51(2)	0	0	0	
Li	0.0	1/4	1/8	15(5)	с	4(3)	0	0	0	
F	0.2166(6)	0.4161(6)	0.4564(3)	9.7(8)	8.5(7)	1.4(2)	3.2(6)	1,2(3)	1.0(3)	
	4 (Yb-F) 4 (Yb-F) F - F 2 (F - F)		2.217(3)Å			4(L1-F)		1.894(3)	ł.	
			2.270(3)			4(L1-F)		2.871(4)		
			2,558(6)	2,558(6)		2(F - F)		2.727(2)		
			2.728(3)		F - F		2.803(¥)	

Table I Atomic Parameters and Interatomic Distances for $LiYbF_4$

^a Coefficients in the structure factor: $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$. ^b The standard error (in parentheses) is equivalent to the last digit as calculated from the variance-covariance matrix. ^c $\beta_{22} = \beta_{11}$.

which were automatically centered¹⁵ in a reduced-slit system at 1.2° takeoff angle. The apparatus and techniques for handling the intensely radioactive actinide samples for X-ray studies have been described in an earlier publication.¹⁶

Results

The Structure of LiYbF₄.—The compounds of the LiLnF₄ class are all isostructural and isomorphous with LiYF₄.⁵ Subsequent investigations by ourselves¹⁷ and other workers¹⁸ have confirmed this fact. A complete determination of the LiLnF₄ crystal was not made, however, prior to that of LiYbF₄ reported here. Lithium tetrafluoroytterbate was selected for this study because of the simplicity of preparation which it afforded. The compound LiYbF₄ was indexed initially from single-crystal data and found to conform to the space group I4₁/a, confirming that the LiLnF₄ compounds are isostructural with scheelite, CaWO₄.⁵

Busing, Martin, and Levy (1962) computer program.¹⁹ An extinction correction was made on F_c by the method suggested by Zachariasen ($r^* = 0.011$ (2) Å).²⁰ The scattering factors for the ions were taken from Cromer and Waber²¹ and the values of $\Delta f' = -0.6$ and $\Delta f'' =$ 6.4 electrons were used for the anomalous dispersion of Mo K α radiation by ytterbium.²²

The quantity minimized by the least-squares program was $\Sigma w |s|F_o| - |F_c||^2$, where w is equal to the reciprocals of the variances which were estimated by the methods of Brown and Levy.²³ Anisotropic temperature factors were calculated for all atoms in Table I. Figure 1 shows a stereoscopic pair of drawings of the structure of LiYbF₄.

The discrepancy factor $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o| = 0.0310$ for 503 independent reflections. The standard deviation of an observation of unit weight is

Figure 1.-Stereoscopic drawings of four nearest neighbor Li and Yb polyhedra. One-fourth unit cell outlined.

The observed conditions for diffraction (hkl, h + k + l = 2n; hk0, h = 2n; and 00l, l = 4n) are consistent for space group I4₁/a (88). The structure was refined by iterative least squares using a modification of the

(15) W. R. Busing, R. D. Ellison, H. A. Levy, S. P. King, and R. T. Roseberry, ORNL Report 4143, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1968.

(17) G. D. Brunton, et al., "Crystallographic Data for Some Metal Fluorides, Chlorides, and Oxides," USAEC Report ORNL-3761, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.

(18) C. Keller and H. Schmutz, J. Inorg. Nucl. Chem., 27, 900 (1965); Kernforschungszentrum Report KFK-431, Karlsruhe, Germany, July 1966. $[\Sigma w(F_{\rm o} - F_{\rm c})^2/(m_{\rm o} - m_{\rm v})]^{1/2} = 1.978$, where $m_{\rm o}$ is the number of observations and $m_{\rm v}$ is the number of variables. The interatomic distances are also listed in Table I. Observed and calculated structure factors are listed in Table II. A partial powder pattern of LiYbF₄ is given in Table III.

(19) W. R. Busing, K. O. Martin, and H. A. Levy, USAEC Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962.

- (20) W. H. Zachariasen, Acta Cryst., 23, 558 (1967).
- (21) D. T. Cromer and J. T. Waber, ibid., 18, 104 (1965).
- (22) C. H. Dauben and D. H. Templeton, *ibid.*, 8, 841 (1955).
- (23) G. M. Brown and H. A. Levy, J. Phys. (Paris), 25, 497 (1964).

⁽¹⁶⁾ T. K. Keenan and F. H. Kruse, Inorg. Chem., 3, 1231 (1964).

TABLE II

TABLE III Partial Powder Pattern of LiYbF4

HKL	d _{obs} .	d calc.	^I est.
011	4.627	4.619	8
112	2.996	2,994	10
013	2.905	2,908	3
004	2.650	2.647	1.
020	2,569	2,566	2
121	2.242	2.243	7
015	1,956	1.957	4
123	1.923	1.924	7
024	1.841	1,842	7
220	1.815	1,815	4
116	1,588	1,587	5
1.32	1.554	1,522	9
033	1.,540	1.540	3
017	1.452	1.451	2
231	1.412	1.411	3
127	1.264	1.263	2
141	1.237	1.236	2
136	1.196	1.195	4
235	1.182	1.181	3
028	1.176	1.176	3
415	1.073	1.073	2
228	1.070	1.069	2
244	1,053	1.053	4
219	1.047	1.047	2
341	1.022	1.022	4
11 10	1.017	1.016	2
L52	0.989	0,989	4
343	0,987	0.986	3

The lattice constants of LiYbF₄ are $a_0 = 5.1335 \pm 0.0002$ and $c_0 = 10.588 \pm 0.002$ Å. The calculated density is 6.0928 g/cm³, Z = 4.

Phase Equilibrium in the LiF-LnF₃ System.—The

Figure 2.—Condensed-phase diagrams of the lithium fluoridelanthanide trifluoride system.

initial intent of this investigation was to determine the extent to which $LiLnF_4$ compounds occur in the lanthanide series and whether more than one equilibrium compound would form within a single $LiF-LnF_3$ system. However, the variations among the crystallization reactions of the $LiLnF_4$ compounds led to examination of their equilibrium phase behavior and to determination of the phase diagrams shown in Figure 2. A single intermediate compound is formed in $LiF-LnF_3$ systems over the range Eu-Lu only. In no case do the tetra-fluorolanthanates exhibit dimorphism, nor do they appear to form solid solutions with either of their component fluorides. Invariant and singular equilibrium reactions are listed in Table IV.

We experienced considerable difficulty in determining liquid-solid transitions involving the $LiLnF_4$ compounds by thermal gradient quenching methods because of a pronounced tendency of $LiF-LnF_3$ mixtures to nucleate in even the most rapidly quenched melts. As a result, microscopic examination of quenched specimens was often ineffective as a means of distinguishing crystals of equilibrium primary phases from the accompanying nucleated flux. This behavior may result

Ln	Composition (Mole % LnF ₃)	Temp. (°C)	Type of Equilibrium at Invariant Temps.	Equilibrium Reaction				
La	20 ^a	770	Eutectic	L ≵ LiF + LaF₃				
Ce	19b	755	Eutectic	L ≠ LiF + CeF3				
Pr	19	750	Eutectic	L ≵ L1F + PrF₃				
Nd	23	738	Eutectic	L ≵ L1F + NdF ₃				
Sm	27	698	Eutectic	L ≵ LiF + SmF₃				
Eu	27	688	Eutectic	L ≠ LiF + LiEuF⊾				
	30	710	Peritectic	L + Hex. EuF₃ ≠ L + Orth. EuF₃				
	40	760	Peritectic	L + Orth. EuF₃ ≠ L + LiEuF₄				
Gd	26	700	Eutectic	L Ż LiF + LiGdF₄				
	39	755	Peritectic	L + Orth. GdF₃ ≵ L + LiGdF₄				
	50	875	Peritectic	L + Hex. GdF₃ ≵ L + Orth. GdF₃				
ть	24	700	Eutectic	L \neq L1F + L1TbF ₄				
	39	790	Peritectic	L + Orth. TbF ₃ \neq L + L1TbF ₄				
	(54) ^c	950	Peritectic	L + Hex. TbF ₃ \neq L + Orth. TbF ₃				
Dy	(24)	700	Eutectic	L ≵ L1F + L1DyF4				
	46	820	Peritectic	L + Orth. DyF3 ≵ L + L1DyF4				
	(81)	1030	Peritectic	L + Hex. DyF3 ≵ L + Orth. DyF3				
Но	(24)	(710)	Eutectic	L ≠ LiF + LiHoF4				
	46	798	Peritectic	L + Orth. HoF3 ≠ L + LiHoF4				
	(84)	1070	Peritectic	L + Hex. HoF3 ≠ L + Orth. HoF3				
Er	21	700	Eutectic	L ≵ LiF + LiErF4				
	48	840	Peritectic	L + Orth. ErF3 ≵ L + LiErF4				
	(88)	1075	Peritectic	L + Hex. ErF3 ≵ L + Orth. ErF3				
Tm	21	692	Eutectic	L \neq LiF + LiTmF ₄				
	50	(835)	Congruent m.p.	L \neq LiTmF ₄				
	53	824	Eutectic	L \neq LiTmF ₄ + Hex. TmF ₃				
	(78)	1030	Peritectic	L + Hex. TmF ₃ \neq L + Orth. TmF ₃				
ТЪ	21	700	Eutectic	L ≿ LiF + LiYbF.				
	50	850	Congruent m.p.	L ≿ LiYbF.				
	53.5	840	Eutectic	L ≵ LiYbF. + Orth. YbF3				
	(79)	985	Peritectic	L + Hex. YbF3 ≵ L + Hex. YbF3				
Lu	22	695	Eutectic	L ≠ L1F + L1LuF4				
	50	(825)	Congruent m.p.	L ≠ L1LuF4				
	54	810	Eutectic	L ≠ L1LuF4 + Orth. LuF3				
	74	945	Peritectic	L + Hex. LuF3 ≠ L + Orth. LuF3				

 $\label{eq:table_tv} Table \mbox{ IV} \\ Invariant \mbox{ Equilibria} \mbox{ and Singular Points in the LiF-LnF3} \mbox{ Systems} \\$

^a Reported as LiF-LaF₃ (86-14 mol %), 758°, by G. A. Bukhalova and E. P. Babaev, Zh. Neorgan. Khim., 10, 1883 (1965). ^b From C. J. Barton and R. A. Strehlow, J. Inorg. Nucl. Chem., 20, 45 (1961). ^c Estimated value.

from the relatively high lattice energy of the LiLnF₄ compounds, compared with other complex fluorides. This is supported qualitatively since values of the corresponding temperatures, $0.5(T_{m_{\text{LiF}}} + T_{m_{\text{LnFs}}})$ - $T_{m_{\text{LiLnF4}}}$, fall in the range 150–300°, while those for the hexagonal NaLnF₄ phases are greater, $250-480^{\circ}$. Direct determination of liquid-solid transition temperatures in melts was achieved by recording temperatures of visually observed phase changes taking place in melts which were protected by dry inert atmospheres. Although this method afforded the greatest reliability and reproducibility, it was of limited use because of the quantities of materials required. Therefore the phase diagrams of the LiF-LnF₃ systems were deduced from a variety of experimental methods. In some cases, redundancy of transition temperature determination was achieved by use of more than one method for at least part of the system.

The diagrams shown in Figure 2 were constructed using the transition temperature data for a specific system, as well as data interpolated from adjacent systems. The relationship introduced by the dimorphism of the lanthanide trifluorides is assumed. The possible occurrence of solid solutions involving the high-temperature forms of the lanthanide trifluorides was not examined.

Discussion

Our initial prediction that LiLnF₄ compounds having the scheelite structure would exist throughout the lanthanides from LiF-TbF3 to LiF-LuF32 was based on the occurrence of LiYF4 and early indications that no intermediate compounds were formed in the LiF-NdF3 system. In tests of this prediction, Vorres and Riviello²⁴ found that the system sequence is somewhat more extensive than was originally predicted, in that it includes the systems LiF-EuF3 and LiF-GdF3 as well. Subsequently, Keller and Schmutz¹⁸ prepared each of the LiLnF4 compounds and obtained precise values for their lattice constants. The results of our present investigation confirm the previous findings and, in addition, report the equilibrium behavior of the tetrafluorolanthanates as well as the detailed crystal structure of LiYbF₄.

The first member of the LiLnF₄ series is the pure compound LiEuF₄ which crystallizes from the melt between 27 and 30 mol % as a primary phase and melts incongruently at 710° to EuF₃ and liquid. Thereafter the melting temperatures of the intermediate compounds show a general increase with increasing atomic number of the lanthanide. Further, the liquidus of the

⁽²⁴⁾ K. S. Vorres and R. Riviello, Proc. Conf. Rare Earth Res., 4th, Phoenix, Ariz., 1964, 521 (1965).

(

LnF3 Conc. mole %)	LaF3	PrF3	NdF3	SmF'3	EuF3	GdF3	ToF ₃	DyF3	HoF3	ErF3	TmF ₃	YbF3	LuF3
10			81.5T				-						
15			785T	775T 698T	685ର୍ ^C	770Q 695V	775V ^a 703V			737ର 699ର	740ହ 695ହ		747 ସ୍ 699 ସ୍
20		758T 750T	755T	745T	745V 690V	710V 694Q	738V 702V	699 କୃ	710V	710V		715ର 699ର୍	
25	865T 770T			710T 698T	703V 690V	0904	708V 702V			740V 736 ସ୍		738V 699Q	722 ହ 695 ହ
30		875 T 750T	790T 738T	735T 698T	710V 690V	728Q 725V 700V	748V 702V			6984 780V		780V 700V	
35			760T 738T	698T	745V 720Q 710V	735V 726Q 702V	775V 702V	699ର୍		810V		810V 700V	
40		942T 750T		830T	780V 755V 710V	775V 755V 695V	807V 792V 703V			829V 818T 699Q 698V	795Q 694Q	828V 700V	803 କ 696 କ
45				885T	835V 755V 710V	840V 755V 695V	858V 792V 790Q			835V		840V	
50		1035T 750T	980T 738T	910T 698T	8909 8909 888V 7709 769V 7209 7209	880V 755V 748Q 695V	908V 908V 792V	846ର 818ର	837Q 798Q	845V 820କ୍		848V	798Q
55					690V 94 <i>5</i> V	953V 875V 755V	955V 792V			905V		850V 840V	
60					980V 760V	1010V 875V	990V 792V			940V 822Q 8300		895V 840V	
65 (7 5					0701		1030V 790V			0757		1020V 840V	902ର 836ର
67 .5 70							1065V 780V			9728		960V 840V	
75								8159		10042	>1.005ର 824ର୍	୨୨୦୪ ୨୫3ର ୫/୦୪	955Q 811Q

Table V Liquid-Solid Phase Transition Data for the LiF-LnF3 Systems^a

^{*a*} The phase transitions represented by these data are evident in Figure 2. ^{*b*} Thermal analysis data. ^{*c*} Data from thermal gradient quenching experiments. ^{*d*} Data from direct visual observation of crystallizing melts.

trifluoride component deviates increasingly from ideality with increasing atomic number of the lanthanide so that, beginning with $LiF-ErF_3$, the remaining lanthanide systems exhibit congruent melting of the $LiLnF_4$ compound. As in the $LiF-VF_3$ system, only one compound forms in the $LiF-LnF_3$ systems and is never found to undergo solid-state transitions within the temperature range of this investigation.

As noted previously,¹⁰ BiF₃ serves as a proxy for lanthanide trifluorides since the radius of Bi³⁺ is nearly equal to those of mid-Ln³⁺ ions. The compound LiBiF₄ is known and has the scheelite structure.¹⁸ The absence of compounds with the scheelite structure in the NaF-LaF₃ and NaF-UF₃ systems, with cation radium ratios $r(M^+)/r(M^{3+}) = 0.93$ and 0.95, respectively, suggests that although the compound LiScF₄ should be formed in the LiF-ScF₃ system where $r(Li^+)/r(Sc^{3+}) = 1.0$ it will not have the scheelite structure.

The propensity of the heavier lanthanides to form the compound LiLnF_4 suggests that such complex fluoride scheelites will probably be formed by other fluoride systems as well. Most important of these are the heavier actinide trifluorides CmF₃, BkF₃, CfF₃, and EsF₃ which offer possibilities for evaluation of effects related to complex compound formation. Derived

radii for the trivalent and tetravalent actinides^{25,26} of atomic numbers 89-98 reflect the contraction anticipated from the development of the 5f shell. Plots of these radii clearly suggest that as Z increases, the radii of the trivalent actinides are decreasing to a minimum value and have nearly reached the radius of europium at californium. If trivalent ionic radius were the only consideration, compound formation would not be expected with Cm^{3+} (0.979 Å) but might occur with Bk^{3+} (0.954 Å) and certainly with Cf^{3+} (0.949 Å); recall that $LiF \cdot LnF_3$ is formed with Eu^{3+} (0.950 Å) but not with Sm³⁺ (0.964 Å). These trivalent radii are derived from oxides; the corresponding ones from fluorides are: Cm, 0.946 Å; Bk, 0.93 Å; Cf, 0.915 Å; Eu, 0.909 Å; Sm 0.921 Å.²⁵ Experimental tests of the predicted compound formation can be made when sufficient amounts of Bk and Cf are available. In the case of berkelium, which has both 3+ and 4+ oxidation states, hydrogen reduction of the expected compound of tetravalent berkelium, LiBkF5, should yield LiBkF₄. This should be a more definitive test than the reaction $LiF + BkF_3$ on a micro scale. If greater

⁽²⁵⁾ J. R. Peterson and B. B. Cunningham, J. Inorg. Nucl. Chem., 30, 1775 (1968); Inorg. Nucl. Chem. Letters, 3, 327 (1967).

⁽²⁶⁾ R. D. Shannon and C. T. Prewitt, Acta Cryst., B25, 925 (1969).

Figure 3.—Unit cell volumes of the LiLnF4 compounds.

5f-orbital participation in bonding played a significant role, we might have found that the lithium fluorideactinide trifluoride compound formation occurred at a slightly larger trivalent ion radius than in the case of the lanthanides. However, the effect was insufficient to hold the compound $\text{LiF} \cdot \text{CmF}_3$ even when the correct lithium:curium ratio was already established (in $\text{LiF} \cdot \text{CmF}_4$ which was hydrogen reduced).

The unit cell volume of LiYbF₄ obtained from our single-crystal studies is in excellent agreement with the value obtained by Keller and Schmutz¹⁸ and attests to the accuracy and precision of their measurements. It is evident in Figure 3 that the volumes of the LiLnF₄ unit cells decrease linearly with decreasing radius of the Ln⁸⁺ ion. No such trend is followed by

Figure 4.—Molar refractivities of $LiF \cdot LnF_3$ and LnF_3 and the cell volumes of $LiF \cdot LnF_3$ vs. atomic number of the lanthanide.

the refractive indices themselves of either the $LiLnF_4$ compounds or the lanthanide trifluorides. However, the Lorentz-Lorenz molar refractivities of both do indeed obey a linear relationship. This is shown in Figure 4 and confirms that the molar refractivities of these compounds are additive as shown to be generally true of fluoride complexes.²⁷

Acknowledgments.—We gratefully acknowledge the valuable assistance provided by our associates R. G. Ross, Amar J. Singh (Bhabha Atomic Research Centre), C. S. Scherer (Montevallo State College), and H. Insley. ⁽²⁷⁾ R. A. Penneman, *Inorg. Chem.*, **8**, 1379 (1969).