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Equilibrium phase diagrams of the LiF-LnF; condensed binary systems were established. For the members of the series with
low atomic number only a simple eutectic is found; for the lanthanides europium to lutetium, the single intermediate com-
pound, LiLnFy, forms in each binary system. These compounds melt incongruently to LnF; and liquid when Z = 63-68,

and congruently when Z = 69-71.

The lithium tetrafluorolanthanates are isomorphous.

A single-crystal study of LiYbF;

established the space group as 14, /a, with lattice constants aq = 5.1335 (2) and ¢ = 10.588 (2) A. Theexistence of the tetra-

fluorolanthanates, conforming closely with earlier predictions, indicates the possibility of actinide analogs.

Because of

similar ionic sizes and charges of the lanthanides and the heavier actinides, it was anticipated that lithium fluoride—actinide

trifluoride compound formation could begin at Z > 96 (curium).
LiF - CmF; compounds gave only the trifiuorides and LiF.

Introduction

The abundance of complex compounds formed by the
lanthanide or actinide fluorides has attracted the inter-
est of inorganic and structural chemists. Successful
predictions of compound formation can be based on
simple criteria such as cation radius ratios? and field
strength ratios.®* The two series of lanthanide and
actinide fluoride complexes offer unique possibilities for
further considerations of size and charge effects. They
afford compound sequences in which adjacent members
are differentiated by small but finite increments in ion
size and field strengths.

The LiF-LnF; series of binary systems affords a good
opportunity for examination of size—charge effects.
Our previous investigation of the LiF-YF; binary
system® had shown the occurrence of the single inter-
mediate compound LiYF,. In contrast, earlier inves-
tigations of the LiF-LaF; and LiF-CeF; systems, re-
spectively,®” had no¢ indicated the occurrence of inter-
mediate compounds. We expanded those initial
studies to include the equilibrium behavior of all LiF-
LnF; melts. We also determined the crystal structure
of the LiLnF, compounds, using single crystals of
LiYbF,, produced in these investigations. Some pre-
liminary data have already been noted in previous
reviews.??

Experimental Procedures
Materials.—Standard techniques for preparation and purifica-
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However, hydrogen reduction of the known LiF - AmFs and

tion of molten fluorides for high-temperature investigations have
been reported previously.®~* Both commercial and laboratory
prepared!? single-crystal LiF samples were used.

Lanthanide oxides of 99.6-99.99, purity were converted to the
trifluorides with ammonium bifluoride; this ensures that the
oxide contamination of the product does not exceed ~300 ppm.*
Purity of the trifluoride product was verified by X-ray diffraction
analysis and by petrographic examination.

We have found from past experience that reaction between
lithium fluoride and actinide fluorides at ~400° is not a satis-
factory method of achieving compound formation. However,
a preferred method involves conversion of a mixture of chlorides
to fluoride with elemental fluorine. Thus, samples of LiCl and
AmCl; and LiCl and CmCl; were equilibrated with F., yielding
first the tetravalent actinide compounds LiAmF; and LiCmFs.t4
Overnight equilibration in hydrogen reduced the tetravalent
actinide to the trivalent state.

Methods.—Several methods were used for investigation of the
equilibrium phase behavior in the LiF-LnFj3 binary systems.
Preponderantly, phase-transition data were obtained by thermal
analysis of crystallizing melts and subsequent thermal gradient
quenching (a modification of classical gquenching methods) and by
direct visual observation techniques.

Single crystals of LiYbF, were isolated from quenched speci-
mens of LiF-YbF; mixtures. Single-crystal fragments of Li-
YbF, were ground in an air race; an ellipsoid 0.184 X 0.184 X
0.292 mm was selected for single-crystal X-ray diffraction
analysis. The ellipsoid was mounted on a computer-operatecd
Picker four-circle goniostat and the diffraction intensities were
measured with a scintillation-counter detector using unfiltered
Mo Ko radiation (\(Kes) 0.70026 &, M(Kaz) 0.713543 A) out to
90° 26 by the 26-scan technique. An angular range of 1.3° was
step-scanned in increments of 0.01° with counts of 1 sec at each
step. The background was counted for 100 sec at the begin-
ning and end of each scan. The takeoff angle was 4°. A
standard reflection (408) was used to check on intensity drift
every 20 reflections. One measurement of the standard reflec-
tion was assigned unit value and the others are expressed as frac-
tions of this value. The intensity measurements obtained be-
tween two suiccessive measurements of the standard reflection
are linearly interpolated. The intensities are thus referred to a
single value of the (408) intensity. FEach reflection was corrected
for absorption (u = 851.3 cm™). The lattice parameters were
determined from 80 high-angle (45-80° 268) Mo Koy reflections
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TaBLE 1
AToMIC PARAMETERS AND INTERATOMIC DISTANCES FOR LiVbF;

Atom x y z 811%%x10°  By,x10% Bsax10° 812%10 Rrax10° B,3x10°
b 0.0 1/4 5/8 5,45(9)b c 0.51(2) 0 0 0
Li 0.0 1/4 1/8 15(5) c 4(3) 0 0 0
F 0.2166(6) 0.4161(6) 0.4564(3) 9.7(8) 8.5(7) 1.4(2) 3.2(6) 1.2(3) 1.0(3)
4(Yb-F) 2,217(HR 4 (L1-F) 1.894(3)4
4(Yo~F) 2.270(3) 4 (L1-F) 2.871(4)
F~F 2.558(6) 2(F - F) 2.727(2)
2(F - F) 2.728(3) F-F 2.803(4)

e Coefficients in the structure factor:

which were automatically centered® in a reduced-slit system at
1.2° takeoff angle. The apparatus and techniques for handling
the intensely radioactive actinide samples for X-ray studies have
been described in an earlier publication.!®

Results

The Structure of LiYbF,—The compounds of the
LiLnF, class are all isostructural and isomorphous with
LiYF45 Subsequent investigations by ourselves' and
other workers'® have confirmed this fact. A complete
determination of the LiLnF, crystal was not made,
however, prior to that of LiYbF, reported here.
Lithium tetrafluoroytterbate was selected for this study
because of the simplicity of preparation which it afforded.
The compound LiYbF, was indexed initially from single-
crystal data and found to conform to the space group
I4;/a, confirming that the LiLnF,; compounds are iso-
structural with scheelite, CaWO,.b

exD["‘ (ﬂ11h2 + ﬂ22k2 + 63312 + 2ﬂ12hk + Qﬂlshl + 2623]3[)] .

is equivalent to the last digit as calculated from the variance—covariance matrix.

b The standard error (in parentheses)

¢ ﬂ22 = 511.

Busing, Martin, and Levy (1962) computer program.!?
An extinction correction was made on F, by the method
suggested by Zachariasen (r* = 0.011 (2) A).2 The
scattering factors for the ions were taken from Cromer
and Waber? and the values of Af’ = —0.6 and Af"’ =
6.4 electrons were used for the anomalous dispersion of
Mo Ka radiation by ytterbium,??

The quantity minimized by the least-squares program
was Zwls]Fo‘ - ‘FCH% where w is equal to the recip-
rocals of the variances which were estimated by the
methods of Brown and Levy.?® Anisotropic tempera-
ture factors were calculated for all atoms in Table I.
Figure 1 shows a stereoscopic pair of drawings of the
structure of LiYbF,.

The discrepancy factor R = Z||F,| — |F||/2|F.| =
0.0310 for 503 independent reflections. The stan-
dard deviation of an observation of unit weight is

Figure 1.—Stereoscopic drawings of four nearest neighbor Li and Yb polyhedra.

The observed conditions for diffraction (kkl, h +
k41 =2n; k0, h = 2n; and 00/, ] = 4n) are consistent
for space group [4;/a (88). The structure was refined
by iterative least squares using a modification of the

(15) W. R, Busing, R. D. Ellison, H. A. Levy, 5. P. King, and R. T, Rose-
berry, ORNL Report 4143, Oak Ridge National Laboratory, Oak Ridge,
Tenn., 1968,

(16) T.K.Keenanand F. H., Kruse, Inorg. Chem., 8, 1231 (1964).

(17) G. D. Brunton, ¢t al., “Crystallographic Data for Some Metal
Fluorides, Chlorides, and Oxides,”” USAEC Report ORNL-3761, Oak Ridge
National Laboratory, Oak Ridge, Tenn., 1865,

(18) C, Keller and H. Schmutz, J. Inorg. Nucl. Chem., 27, 900 (1965);
Kernforschungszentrum Report KFK-431, Karlsruhe, Germany, July
1966,

One-fourth unit cell outlined.

[Sw(F, — Fo)?/(m, — my)]"* = 1.978, where m, is the
number of observations and ., is the number of vari-
ables. The interatomic distances are also listed in
Table I. Observed and calculated structure factors
are listed in Table II. A partial powder pattern of
LiYDbF.is given in Table 111,

(19) W. R. Busing, K. O. Martin, and H. A. Levy, USAEC Report
ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962,

(20) W. H. Zachariasen, Acta Cryst., 28, 558 (1967).

(21) D.T. Cromer and J. T. Waber, zbid., 18, 104 (1965).
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(23) G. M. Brown and H. A. Levy, J. Phys. (Paris), 28, 497 (1064).
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TaBLE 11T 1100 — i
PartiAL POWDER PATTERN OF LiYbF; 900 |— !
HKL, do‘ns‘.. dcaILc. Iest. 70¢ F
oL 4627 4618 8 500 G 20 a0 &0 80 100 O 20 40 60 80 100 0 20 0 0. 0 10¢
112 2.99 2.99 10 L%, (mole %)
[0S . 3 . . . . .
013 2965 2.908 Figure 2.—Condensed-phase diagrams of the lithium fluoride-
004 2.650 2.647 - lanthanide trifluoride system.
020 2.569 2.566 2
121 2.242 2.243 7
a5 1.956 1.957 4 initial intent of this investigation was to determine the
123 1.923 1.924 7 extent to which LiLnF, compounds occur in the lan-
024 1.841 1.842 7 thanide series and whether more than one equilibrium
220 1815 L8 “ compound would form within a single LiF-LnF, systeni.
: 1.588 1,587 5 . N
e i However, the variations among the crystallization reac-
132 1.554 1.522 9 . ' R
033 1500 1540 5 tions of the LiLnF,; compounds led to examination of
L7 1.452 1.451 2 their equilibrium phase behavior and to determination
251 1.412 1.411 3 of the phase diagrams shown in Figure 2. A single
127 1.264 1.263 2 intermediate compound is formed in LiF-LnF; systems
141 1.237 1.236 2 over the range Eu—Lu only. In no case do the tetra-
136 1.196 1.195 N fluorolanthanates exhibit dimorphism, nor do they ap-
. 1.18 3 . . . . :
235 1.182 . pear to form solid solutions with either of their com-
028 1.17 1.17% 3 . . . e
L5 1075 107 5 ponent fluorides. Invariant and singular equilibrium
. 2 . .
i i i . imental results
228 1.070 1.069 2 reactions are listed in Table IV. Experimental res
244, 1,053 1.053 4 are listed in Table V.
219 1.047 1.047 2 We experienced considerable difficulty in determining
341 1.022 1.022 4 liquid—solid transitions involving the LiLnF, com-
1110 1.007 1.016 2 pounds by thermal gradient quenching methods because
152 0.989 0.989 4 of a pronounced tendency of LiF-LnF; mixtures to
3 .987 0.986 3 . .
" ° nucleate in even the most rapidly quenched melts.
The lattice constants of Li¥YbF, are ay = 5.1335 =+ As a result, microscopic examination of que'nc.hed speci-
0.0002 and ¢, = 10.588 = 0.002 A. The calculated  mens was often ineffective as a means of dlstlnguﬁshmg
e ilibrium pri s from the ac-
density is 6.0928 g/cin?, Z = 4. crystals of equilibrium primary phases from t

Phase Equilibrium in the LiF-LnF, System.—The  companying nucleated flux. This behavior may result
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TaBLE IV
INVARIANT EQUILIBRIA AND SINGULAR POINTS IN THE LiF-LnF; SYsTEMS
Composition  Temp. Type of Equilibrium i1
Ln (Mole % LnF3) (°C) at Invariant Temps. Equilibrium Reaction
La 208 770 Eutectic L T LiF + LaF;
Ce 19b 755 Eutectic L 2 LiF + CeF3
Pr 19 750 Eutectic L T LiF + PrF;
Nd 23 738 Eutectic L ¥ LiF + NdF;
Sm 27 698 Eutectic L ¥ LiF + SmF,
Eu 27 688 Eutectic L 2 LiF + LiEuFy
30 710 Peritectic L + Hex, EuFs Z L + Orth., EuFs
40 760 Peritectic L + Orth, EuF3 2 L + LiEuF,
Gd 26 700 Eutectic L ¥ LiF + LiGdF,
39 755 Peritectic L + Orth. GdFy Z L + LiGdFy
50 875 Peritectic L + Hex. GdF3 Z L + Orth. GdF;
Tb 24 700 Eutectic L ¥ LiF + LiTbF,
39 790 Peritectic L + Orth. ThF3 Z L + LiTbF,
(54)¢ 950 Peritectic L + Hex. TbFs T L + Orth. TbFj
Dy (24) 700 Eutectic L x LiF + LiDyF,
46 820 Peritectic L + Orth. DyF3 2 L + LiDyF,
(81) 1030 Peritectic L + Hex. DyF; 2 L + Orth. DyF;
Ho (24) (710) Eutectic L # LiF + LiHoF,
46 798 Peritectic L 4+ Orth. HoFy; 2 L + LiHoF,
(84) 1070 Peritectic L + Hex. ‘HoF3; 2 L + Orth, HoFj;
Er 21 700 Eutectic L 2 LiF + LiErF,
48 840 Peritectic L 4+ Orth, ErF3; 2 L + L1iErF,
(88) 1075 Peritectic L + Hex. ErF3 2 L + Orth, ErF;
Tm 21 692 Eutectic L 2 LiF + LiTmF,
50 (835) Congruent m.p. L 2 LiTmFy
53 824 Eutectic L 2z LiTmF, + Hex. TmFy
78) 1030 Peritectic L + Hex. TmF3; 2 L + Orth. TmF;
b 21 700 Eutectic L 2 LiF + LiYbF,
50 850 Congruent m.p. L 2 LiYbFs
53.5 840 Eutectic L # LiYbFy, + Orth. YbF;
79 985 Peritectic L + Hex. YbF3 2 L + Hex. YbF;
Lu 22 695 Eutectilc L 2 LiF + LiLuF,
50 (825) Congruent m.p. L 2 LiLuF,
54 810 Eutectic L z LiLuFy, + Orth. LuF3
74 945 Peritectic L + Hex. LuF3; 2 L + Orth, LuFg
a Reported as LiF-LaF; (86-14 mol %), 758°, by G. A, Bukhalova and E. P. Babaev, Zh. Neorgan. Khim., 10, 1883 (1965). ° From

C. J. Barton and R. A. Strehlow, J. Inorg. Nucl. Chem., 20,45 (1961).

from the relatively high lattice energy of the LiLnF,
compounds, compared with other complex fluorides.
This is supported qualitatively since values of the cor-
responding temperatures, 0.5(Tnrr + Tomror)
Tvizars 1211 in the range 150-300°, while those for the
hexagonal NaLnF, phases are greater, 250-480°. Di-
rect determination of liquid-solid transition tempera-
tures in melts was achieved by recording temperatures
of visually observed phase changes taking place in
melts which were protected by dry inert atmospheres.
Although this method afforded the greatest reliability
and reproducibility, it was of limited use because of the
quantities of materials required. Therefore the phase
diagrams of the LiF-LnF; systems were deduced from a
variety of experimental methods. In some cases, re-
dundancy of transition temperature determination was
achieved by use of more than one method for at least
part of the system.

The diagrams shown in Figure 2 were constructed
using the transition temperature data for a specific
system, as well as data interpolated from adjacent
systems. The relationship introduced by the dimor-
phism of the lanthanide trifluorides is assumed. The
possible occurrence of solid solutions involving the
high-temperature forms of the lanthanide trifluorides
was not examined.

¢ Estimated value.

Discussion

Our initial prediction that LiLnF, compounds having
the scheelite structure would exist throughout the lan-
thanides from LiF-TbF; to LiF-LuF;* was based on
the occurrence of LiVF, and early indications that no
intermediate compounds were formed in the LiF-NdF;
system. In tests of this prediction, Vorres and Rivi-
ello?* found that the system sequence is somewhat more
extensive than was originally predicted, in that it in-
cludes the systems LiF-EuF; and LiF-GdF; as well.
Subsequently, Keller and Schmutz!® prepared each of
the LiLnF, compounds and obtained precise values
for their lattice constants. The results of our present
investigation confirm the previous findings and, in
addition, report the equilibrium behavior of the tetra-
fluorolanthanates as well as the detailed crystal struc-
ture of LiYDbF,.

The first member of the LiLnF, series is the pure
compound LiEuF, which crystallizes from the melt
between 27 and 30 mol 9 as a primary phase and melts
incongruently at 710° to EuF; and liquid. Thereafter
the melting temperatures of the intermediate com-
pounds show a general increase with increasing atomic
number of the lanthanide. Further, the liquidus of the

(24) K. S. Vorres and R. Riviello, Prog. Conf. Rare Earth Res., 4th, Phoe-
nix, Arig., 1964, 521 (1965).
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TaBLE V
L1Quip—SoLIiD PHASE TRANSITION DATA FOR THE LiF-LnF; SysTEMs¢

LnF;
Cone. LaFy Prfs; NdF4 SmF'3 Bufs, G3¥,
(mole %)
10 gL57°
15 7857 7757 e85]°  770Q
698T 695V
6929
20 7587 7557 7457 745V 710V
7507 690V 6944
690V
25 865T 7107 703V
770T 698T 690V
20 8751 790T 7350 710V 7289
7501 7387 6987 690V 725V
700V
6940
35 7607 698T 4S5V 735V
73817 7208 7264
710V 702V
6908
40 9427 8307 780V 775y
750 755V 755V
710V 695V
685V
45 885T 835V 840V
755V 755¢
710V 695V
683V
50 1035T 980T 910T  €9CQ 880V
7501 738T 5987 888V 755¢
7709 7439
769V 695V
7208
712V
690V
55 945V 953V
875V
755V
60 980V 1010V
760V 875V
690V
65
67.5
70
75

@ The phase transitions represented by these data are evident in Figure 2.

quenching experiments,

trifluoride component deviates increasingly from ideal-
ity with increasing atomic number of the lanthanide so
that, beginning with LiF-ErF; the remaining lan-
thanide systems exhibit congruent melting of the LiLnF,
compound. As in the LiF-YTF; system, only one com-
pound forms in the LiF-LnF; systems and is never
found to undergo solid-state transitions within the
temperature range of this investigation.

As noted previously,’® BiF; serves as a proxy for
lanthanide trifluorides since the radius of Bid* is
nearly equal to those of mid-Ln®* ions. The com-
pound LiBiF, is known and has the scheelite structure.®
The absence of compounds with the scheelite structure
in the NaF-LaF; and NaF-UF; systems, with cation
radium ratios »(M™)/r(M?3*) = 0.93 and 0.95, respec-
tively, suggests that although the compound LiScEF,
should be formed in the LiF-ScF; system where #(Li*)/
7(Sci+) = 1.0 it will not have the scheelite structure.

The propensity of the heavier lanthanides to form
the compound LiLnF, suggests that such complex
fluoride scheelites will probably be formed by other
fluoride systems as well. Most important of these are
the heavier actinide trifluorides CmF;, BkF;, CfF;, and
EsF; which offer possibilities for evaluation of effects
related to complex compound formation. Derived

ToF;  DyF;  HoF;  ErFy;  TuF, YoF;  LuFs
rysvd 7372 740Q 7479
702V 699¢ €959 699Q
738 §99Q  TIOV 710V 7159
702V £99Q
708Y 740V 738y 7224
702V 7364 6999 695Q
989 695V
.87 780V 780V
702V 200V
75V 6999 q10v gLov
702v 700V
8o7v g20v  795Q 828V 8034
792V 8leT 6942 700V 696
703V 6999
698V
g58v g35v 820V
792V
790Q
702V
G0BY  846Q  837q 84SV giev 798g
792V 818@ 7989 8208
955y 905V 850V
792V 840V
9507 940V 8o5v
792 8222 840V
8309
1030V 1020v 9024
790V 840V 8368
975V
1065V 960V
780V g40v
8154 1004Q >10058 990V 955
824 9839  gllQ
84OV

b Thermal analysis data. ¢ Data from thermal gradient

? Data from direct visual observation of crystallizing melts.

radii for the trivalent and tetravalent actinides® %
of atomic numbers §9-98 reflect the contraction antici-
pated from the development of the 5f shell. Plots
of these radii clearly suggest that as Z increases, the
radii of the trivalent actinides are decreasing to a mini-
mum value and have nearly reached the radius of
europium at californium, If trivalent ionic radius
were the only consideration, compound formation would
not be expected with Cm3+ (0.979 A) but might occur
with Bk3+ (0.954 A) and certainly with Cf3+ (0.949 A);
recall that LiF.-LnF; is formed with Eu®+ (0.950 A)
but not with Sm®+ (0.964 A). These trivalent radii
are derived from oxides; the corresponding ones from
fluorides are: Cm, 0.946 A; Bk, 0,93 A; Cf, 0.915 A;
Eu, 0.909 A; Sm 0.921 A.» Experimental tests of
the predicted compound formation can be made when
sufficient amounts of Bk and Cf are available, In the
case of berkelium, which has both 3+ and 44 oxida-
tion states, hydrogen reduction of the expected com-
pound of tetravalent berkelium, LiBkF;, should yield
LiBkF,. This should be a more definitive test than
the reaction LiF 4+ BkF; on a micro scale. If greater

(25) J.R. Peterson and B. B. Cunningham, J. Inorg. Nucl. Chem., 80, 1775
(1968); Inorg. Nucl. Chem. Letters, 8, 327 (1967).
(26) R. D, Shannon and C. T, Prewitt, Acta Cryst., B25, 925 (1960).
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Figure 3.—Unit cell volumes of the LiLnFy compounds.

5f-orbital participation in bonding played a significant
role, we might have found that the lithium fluoride~
actinide trifluoride compound formation occurred
at a slightly larger trivalent ion radius than in the case
of the lanthanides. However, the effect was insuffi-
cient to hold the compound LiF:CmF; even when the
correct lithium:curium ratio was already established
(in LiF - CmF, which was hydrogen reduced).

The unit cell volume of LiYbF, obtained from our
single-crystal studies is in excellent agreement with
the value obtained by Keller and Schmutz!® and at-
tests to the accuracy and precision of their measure-
ments. It is evident in Figure 3 that the volumes of
the LiLnF, unit cells decrease linearly with decreasing
radius of the Ln®* ion. No such trend is followed by
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Figure 4.—Molar refractivities of LiF-LnF; and LnF; and the
cell volumes of LiF -LnF; vs. atomic number of the lanthanide.

the refractive indices themselves of either the LiLnF,
compounds or the lanthanide trifluorides. However,
the Lorentz-Lorenz molar refractivities of both do
indeed obey a linear relationship. This is shown in
Figure 4 and confirms that the molar refractivities of
these compounds are additive as shown to be generally
true of fluoride complexes.?
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